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near the front. The maximum displacement of the latter corresponds to the neighbor- 
hood of the pressure singularity. 
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Centered waves and strong discontinuities in a perfectly conducting mag - 

netizable incompressible medium are investigated. It is shown that inshock 
waves in such medium the magnetic field tangential to the discontinuity 

plane and the magnetic induction increase, and the magnetic permea - 

bility decreases. In centered waves the tangential magnetic field and mag- 
netic induction decrease. The problem of disintegration of an arbitrary 
discontinuity in a magnetizable perfectly conducting incompressible 

medium is solved by constructing diagrams in the plane of components of 
the tangential velocity initial shock. The diagrams make possible the det- 

ermination of the combination of waves and discontinuities formed at 
disintegration. 

Let at the initial instant of time t = 0 parameters B,, El,, v,, and T become 
discontinuous in the plane z = 0. 

Fig. 1 

If the laws of conservation are not satisfied at 
the discontinuity, the latter cannot exist, and it is 
necessary to determine the motion of medium at the 
following instants of time. The self-similarity of the 
problem implies that the motion must cons&t of a com- 
bination of shock waves S, centered waves 8, rota- 
tional Alfven discontinuities A and a contact 
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discontinuity K. It will be shown below that the propagation velocity of such waves 

(with the model considered here ) is such, that two waves may propagate in each dir - 
ection from the contact discontinuity that separates them (Fig. 1) . The gasdynamic 
problem of the disintegration of an arbitrary discontinuity in a perfect gas was solved 

in [l, 21 , for a medium with an arbitrary equation of state it was solved in [31 , and 
for combustible mixtures in [4] . The magnetohydrodynamic problem of disintegration 

of an arbitrary discontinuity was solved in [53 , 
We denote the parameters that define the medium at the initial instant of time 

by the subscript zero. Parameters of the medium that lies at the initial instant of time 

to the left of the discontinuity plane and subsequently to the left of the contact dis - 

continuity plane are denoted by a prime. Parameters of the medium lying to the right 

of corresponding surfaces are denoted by letters without primes, and parameters of the 
medium behind the first wave moving either right or left are denoted by the numeral 1, 

while those behind the A -discontinuity by numeral 2 . 

1. Basic equations. The system of equations that defines continuous flows of a 
magnetizable perfectly conducting fluid may be written as [6-81 

$-+ divpv = 0, p= p. + i K[(P-$) HdH 
0 

f$=vp+ &MH~B+ Bs 

w 

z a (og+pZ7,,,)= -div{ov(g+L+U -%! 
P m 

4Jm 

$ + (vV) B = (BA) V, 
) 

+$ExH} 

cE=-vxB, B=pH=H+hM 

fTn=&no+ 

where the notation is the same as in [8] . It is possible to obtain from (1.1) in a system 

of coordinates in which the discontinuity is at rest the relationships valid at the dis- 
continuity surfaces f1] 

{f’%) = 0, {Pu,s + p - B,H, / 4n) = 0 (1.2) 

@,I = O, &a {VT) = @nB,}, pv, {VT} = B, {H,} / 4~ 

where subscripts T and n denote vector components tangent and normal to the dis - 
continuity surface {F} = Fl - F,, where PO and Fr represent values of F to 

the left and right of the discontinuity, respectively. The solution of system (1.2) must 

satisfy the condition of nondiminution of entropy 

R (1.3) __ . _ 
sH=o HaH}so 

0 
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where SH=O is the entropy of the medium in a zero magnetic field. Subsequently 
we consider an incompressible saturated magnetic material which satisfies the 

following equations of state : 

p = const, Urn,, = CT, M = K (8 - T) 
when 8 is the Curie temperature and K = cor&. 

(1.4) 

2. Centered waves in an incompnuible perfectly conducting magnetizable medium, 
We seek a solution of system (1.1) of the form 

(2.4) 

where 1 is a unit (1.1) we obtain for 
the definijon of propagation of simple centered waves the equations 

BH 
P - -=I const, 

4n z(b) = z. exp {mfi (‘r/i + ba - v/1 + boa) + 

rnZ (b) - mro} (2.2) 
8% 
ag= -(E-U,);, 2 = -&$[bf(b)] 

f(b)=l- ;;_&$, E= F, a,a=~ 
Tl 

z 
T To= 3 4rrK8 =- 
8’ 

8, bO=!+!, fj=B”a, n=- 
n 4npce Bn 

where &s and To are the magnetic induction and the medium temperature in the 
unperturbed state. From the third and fourth equations of system (2.2) we obtain 

Since in a centered wave propagating at velocity & the absolute value of the 
magnetic induction vector does not change, hence E1 = comt. Such centered 

wave degenerates into a weak discontinuity that propagates at the Alfven velocity. In 
a wave that propagates relative to the medium at velocity o = Es - % the direction 

of vector B does not vary, the wave may be considered to be plane. The propagation 

velocity of a wave can be defined by 

as (b) = uA2 + 
B,,sb” 4nM m$r 

4nP (* + @) B, (1 + b‘A)l’l + i-rnpr 1 P-4) 

The tangential velocity distribution in such wave is linked wtth vector b by the 
relation b 

- 
v, = v+o+7 b i a(b)& 

(2.5) 

where %o is the velocity of unperturbed medium. The propagation velocity of the 
simple wave u (8) and the relation between parameter V* and b (2.5) in the wave 
were determined in [9] . 

Let us consider the variation of quantities in a plane centered wave (2.5) 
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where il& I i$ = E I (U&2 I db), which implies that sign (ab / at) = & sign 
(aa f 6%). 

The upper and lower signs in this formula and in (2.5) correspond to centered 
waves moving to the right and left, respectively. 

When (8U / 6%) , 0 only centered waves for which the absolute value of mag- 
netic induction vector decreases are possible, while for (aa / ab) < 0 the absolute 
value of that vector increases. In the case of #j < 1, m 6 1 

aa 
z= 

*?a2 3(i -z (&))b 

&pa (b) (1 + b2)‘la 
(2.6) 

only centered waves for which the absolute value of the magnetic induction vector de- 
creases are possible. It follows from the second of Eqs. (2.2) that for p <I and 

m 6 1 the initial temperature distribution in waves remains unchanged, and the 
magnetic induction vector is expressed in terms of the magnetic field by 

B--H+ 4nK(*-T) H (2.7) 
IHI 

Let us compare the propagation velocity of weak perturbations U with the Alfven 
velocity UA. It is seen from (2.4) that a (b) < aA when m@ > 1 am& (b)> aA 
when mfiz < 1 When fi < 1 and m 6 1 the velocity of small ~~rbations 

u (b) is higher than the Alfven velocity 

C8 (5) > aA (2.8) 

By expressing the magnetic induction vector & in terms of the magnetic field 
vector H as in formula (2.7) , the relationship at centered waves (2.5) can be written 
in the form 

(2.9) 

3. Shock waves in a uerfectly conducting magnetizable medium. 
The relationships at a shock wave in incompressible fluid were considered in [9] , It 
was assumed there that in a zero magnetic field the enthalpy is proportional to the 
temperature Wg = CT. Here we use the relatio~hip Umo I= CT, where Umo. is 
the internal energy of fluid in a zero magnetic field. This explains why the results of 
shock wave investigation in the present work differ from those in [91. With allowance 
for (1.4) system (1.2) can be transformed to 

a2 b-+$!!?& 1 1 = {b}, {v+) = V&J), g (PI = - 
{If&) (3.4) 

+}={a2b2(1- &!!&-)~+23n(~&h~~+ vf!!& + 

(vi + ba - m’)” - 2b2 1- &i$._)} , Bs 
as=*, 

The condition for the nondiminution of entropy (1.3) is of the form 
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The fourth of Eqs. (3. 1) is a quadratic equation with respect to the temperature jump 
{T}. When p < 1 and m < lone of the roots {T}~ N 1 ! p has no physical 

meaning, and the second can be written in the form 

It follows from this that in such shocks the temperature of medium does not change. 
For $ < 1 and m s 1 condition (3.2) is transformed to 

(~1 > @To VI + ho2 (A - r&P (3.4) 

With allowance for (3.3) and (3.4) we have 

(1 + b,+J- >$s(E-I)(&+l) (3.5) 

Condition( 3.5) implies that b, > b,. Hence shock waves which increase the magnetic 
induction and magnetic field vectors are possible. The magnetic permeability is in 

this case diminished. 
From the first of Eqs. (3. 1) and Eq. (3.3) follows 

(3.6) 

moz~~~v Y=so= (p(i - mo)-"' 

Using the inequalities m. < 1 and 0 < (ET - 1) / (E - 1) < 1 (the latter 

inequality is valid for any % > 0 and b, > 0), from (3.6) we obtain 1 < y2 < 
(1 - m,)-1 1. The last formula shows that the considered shocks can only propagate 

at velocities higher than the Alfven velocity. The second of Eqs. (3.2) determines the 

relation between tangential components of the magnetic induction vector and the vel- 

ocity of medium 
VT1 - VTO = f TAO 1 Y (61, 60) 1 Pl - bo) (3.7) 

where the upper and lower signs relate to waves propagating to the right and left, res - 
pectively. Using formula (2. ‘7) for expressing the magnetic induction vector in terms 

of the magnetic field vector we obtain 

VT1 - vso = ‘f ‘3~ (I K, I, I Ko I) (%I - Ko), y > 0 (3.8) 

Using the method proposed in [ll, 123 for investigating the interaction between a shock 

wave and small perturbations propagating at velocities[lo]a~=B, / d= u and UI 
( al is the velocity of entropy wave propagation), for the condition of shock wave 
evolution we obtain 

when j3 < 1 and m G 1 Eq. (2.4) and the second of Eqs, (2.2) may be written 
in the form 

(3.10) 
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+x = z, i1 + mf3 (j4-pP + ma,)] (3.11) 

which are accurate to within infinitely smalls of order pa . The condition Us > UO 

with Eqs. (3. 10) and (3.11) imply that 

(3.12) 

When 6 < 1 the inequality - 1 -l-z0 j- @&ma C 0 is always satisfied, and 
from inequality (3. 12) follows that b, > 6,. Conditions (3.9) are satisfied when the 
inequality bl > 6, is satisfied. Henceforth the case of fl<i and rnG1 
will be considered. 

AL1 calculations and estimates presented in Sect. 3 are valid for E < min 
{x0, 1 - zo} / rn/!%,. This inequality imposes a restriction on the magnetic induct- 

ion vector behind the shock wave. 

4. Candftlon~ at rotational and contact ditcontinuities in psufisctly conducting 

incomptible .mrgnrUnrbb mad& At a rotational discontinuity only.& and 

‘Vr 9 i. e. the tangential components of the magnetic field and velocity respectively 
are discontinuous, while the magnetic field remains unchanged, 

The variation of tangential velocity components and of the field is defined by the 
relation 

VT!4 - v+l= F F (H,, - Hz,) 

The upper and lower signs correspond to waves propagating to the right and left, 
respectively. At the contact discontinuity 

The temperature and pressure may be discontinuous. 

(4-V 

(4.2) 

5. Diainte~ratton of an arbitrary ditcontinuity (the plsnl; carp). Let us consider 
the plane problem of disintegration of an arbitrary discontinuity H,, 1 H’T0 11 vro 11 vto’. 
Below in this Section we omit the vector symbol and the subscript 7 : The condition 
of evolution (3.9) and the second of equalities (2.7) imply that a shock wave&’ or 

centered wave R propagate to both sides of the contact discontinuity, which are fol - 
lowed bv Alfven discontinuities Such flow is diagrammatically shown in Fig. 1, 

Let us consider in the v.H -plane the curves defined 
by Eqs. (3.8) and (2.9) which in Fig, 2 are, respectively, 
denoted by letters s and R These curves issue from 
points with coordinates v,, Ho and v,‘, Ho’ and corres- 

pond to waves propagating to the right through the medium 

with parameters v, , Ho , andTo , and to the left through the 

medium with parameters v,‘, III,,‘, and Ta’respectively. 

The curves shown emanating from point 01 in the lower 
half-plane in Fig. 2 correspond to waves 8 and R which 
move to the right and left through the medium in which 
the tangential component of the magnetic .ield is neg - 
ative. The tangential component of the magnetic field 

Fig. 2 
may decrease to zero in the case of centered waves, 
while in shock waves it can increase from zero to 00. 

ig. 2 is shown the case whenHo < Horand 8s < v,‘, and the line that corresponds to 
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the centered wave moving to the left through the medium with paramete*, v,‘, HO’ and 

ToI in&seCtS the line that corresponds to the centered wave moving to the right through 
the medium with parameters of state denoted by subscript zero (these two curves are 
shown in Fig. 2 by solid lines). 

Theintersection point A at coordinates V,H1corresponds to the state behind the 

fronts of centered waves moving in opposite directions away from the initial discon - 
tinuity. This represents the particular case of disintegration of an arbitrary discon - 

tinuity into two centered waves : RKR, A contact discontinuity may exist between 

these waves at which the temperature and pressure are discontinuous, The case in 

which wave Ii moving through the medium with parameters Ve’, No’, and Ts’ 
does not intersect wave R but intersects wave S which moves through the medium 

with parameters uo, Ho, and TO is shown in Fig. 2 by a dash line. The point of 
intersection is denoted by B whose coordinates correspond to the state behind the 

fronts of the shock wave running to the right and the centered wave running to the left 

of the initial discontinuity. 
A contact discontinuity, at which the temperature and pressure are discontinuous, 

exists between such waves. We have the particular case of disintegration of an arb - 

itrary discontinuity into a shock and a centered wave : RKS, The regions of existence 
of combinations RKR and RKS are separated by the line emanating from point 

VoH, and defined by the equation 00 = 2, -t- X (Ho, -@I (Fig. 3). This line 
corresponds to a centered wave that propagates to the left and changes the magnetic 

field and velocity from 80’ and He’ to VoHo* Such line represents the solution 

of the problem of disintegration of an arbitrary discontinuity into a centered wave 

moving to the left and a contact discontinuity RK. 

Fig. 3 

The boundaries of all regions iu which one or the another variant of disintegration 
of an arbitrary discontinuity into two waves moving in opposite directions is realized 
can be similarly constructed in the VIZ-plane for fixed VO, HO, and To. 

Sixteen regions are shown in Fig. 3. in the VH -plane. Each of these corresponds 

to a particular combination of two waves moving to the right and tiff, of ~4 -& 
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cmtiwitioo which follow these arzd rotate the magnetic field by $@.I@, and of a con- 
tact discontinuity lying between these, 

Let us consider the regions of parameters denoted by subscript ZEZO atwichtbe dia- 
integration of an alrbitrq diiontinuity is not accompanied by kiiscontinuities. Four 
combinations are poasiblo: RKB, 8”&$ 8KS and SKI?* The regiona of these con- 

figuration lie in the upper half-plane to the Soft of line Lg map which is defined 

We draw through point Q1 the lines 

%A= ~-k~(&,~), B>& f&4) 
v~A=+~(&H)(M*,---, o<fl<& 

Lines (53) and (5.4) divide the region lying to the right of line L$ mar into 
four parts &rose points correspond to the disintegration of an arbitrary d~scon~nu~t~ into 

tha fotlming cornbinirtion of waves :.&&BAR, RAKES, ??AKA&,and SAKASI 

If the point corresponding to the state #’ lies in the lower half-plane PO’ < O&be 
combination of waves at the disint_egration of an arbitra~ discmtinuity contains mt: 

Alfven ~~~~~~~~~it~ which turns the magn&ic field by 180” and NM to the right Of 

left: of the c:ontik?z disc0rkttDuity. Eight regions which correspnd to various cambin41t4Clns 
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of waves and discontinuities and contain one such Alfven discontinuity are shown in 
Fig. 3 in the lower half-plane H < O.These regions are separated from one another by 
lines LR max LAG and LAS . Line LR max passes through point v (0), 0 is 
defined by the equation 

vo = v + x (0, - H) + x (0, Ho), H < 0 (5.5) 

and corresponds to the disintegration into the combination RKR. To the left (right) 
of line Gr max lie regions whose points correspond to parameters with subscript 0’ 
for which arises a single A -discontinuity runningto the left (right) of the contact dkon- 
tinuity. 

Lines LAG and LAs. plotted in the lower half-plane VH pass through point 

v (O), 0. Line LA1 corresponds to the combination AKR when -Ho < H < 0 
and when H < - H to AKS. Line LA, corresponds to combinations KAR and 

KASwhen-Ho < H < OandfJ< - Herespectively (Fig. 3). The equations of 
these lines are 

LAI: v = v. - x (-H, Ho) + 2H&opo / B,, -Ho < H < 0 (5.6) 

v = v. + Y (-H, Ho) (H + Ho) + 2Haiopo’ / B,, H < -Ho 
L& v = v. - x (-H, Ho) - ~HUA,~~ / B,, -Ho < H < 0 (5.7) 
v = v. + Y (-H, Ho) (H + Ho) - ~H~A,P~ / B,, H < - H,, 

Curves which relate to wave combinations RAK and SAK (Fig. 3) issue 
from point 0, of line LAG at coordinates UsA1 = v. - 2aAO’po’H0 / By, H, . 
The equations of these curves are, respectively, of the form 

VoAl = v + x (Ho, -H), He -HH, 
vo&=v--(HO,---H)(HO+H), -H,<H<O 

(5.8) 

Similarly, point 0, of line LAG at coordinates -Ho, UOA~ = v. + 

2aAoiL&o 1 B, is the origin of curves which relate to combinations RKA 

and SKA. The equations of these curves are, respectively, of the form 

v~Az = v + x (Ho, -H), H < -Ho 

voAz=v+Y(Ho,-H)(--Ho-H), -H,<H<O 
(5.9) 

Lines (5.5) - (5. 9) divide the lower half-plane into eight regions that correspond 

to the following wave combinations SAKS, SAKR, RAKR,RAKS, SKAS, 
SKAR, RKAS, and RKAR(Fig. 3). It isseen from Fig. 3 that there exists altogether 

thirty six possible combinations of waves and discontinuities of the S, R, K and A type 
when an arbitrary discontinuity disintegrates in the plane case with Ho 11 Ho’ 11 u. 11 vo’. 

6. Disintegration of an arbitrary discontinuity ( the three-dimensional case). 
Let us consider the three-dimensional problem of disintegration of an arbitrary dis - 
continuity in which the vectors of velocity and magnetic field lie in different planes 
on both sides of the discontinuity plane. The conditions at the contact discontinuity 
cannot be satisfied without the introduction of three-dimensional Alfven discontinuities. 

We construct the solution of the problem in the plane AU = Vo - vo’, 

Aw = w. - wo’ of the differences of velocity projections on the y - and z - 
axes to both sides of the discontinuity. In the &JAW -plane the combinations of 
two S- or R- waves propagating in various directions from the initial discontinuity 
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are represented by regions. while combinations of less than two S- or R- waves are 
represented by region boundaries in the form of circles. 

Let us assume that the initial conditions are such that the three-dimensional initial 
discontinuity disintegrates into the AKAS combination. In the AvAw -plane the 
equation of the line corresponding to that combination is 

where the subscript T at H, is omitted. 

The line defined by Eq. (6. 1) is a circle whose center is at point Au = Lv, 
Aw = L, and radius is equal 1 R 1. 

Let H,, II HsO’. We select the direction of the magnetic field as the y -axis 

and make the z -axis perpendicular to the y -axis and to the normal discontinuity 

surface. The center of circle (6. 1) lies on the axis Aw = 0 so that circle inter - 

sects the axis AW = 0 at two points AZ+ and Au,. One of these corresponds 
to the KS -combination and the other to the AKAS -combination, where the mag- 
netic field is turned by $80 in the A -discontinuities. Points Au, and Av~ 

lie at distance 1 R 1 from point Av. ti L,, . 
Thus for H,, II HTo’ the line ZKAS can be determined as follows, The line 

H = Ho ’ is drawn in the VH -plane (Fig. 3) ; its intersection points with the lines 
that correspond in that plane to combinations KS, and ,AKAS are plotted on the 

Au -axis in the AU, AW -plane, and these points are rotated about the center. The 

described line divides the two regions SAKAS and RAKAS. 
If the magnetic field vector to the right of H+o is not parallel to the magnetic 

field vector to the left of H,o’, then L, # 0 and the radius of circle (6. 1) remains 

unchanged. Hence in this case the line to whichin the AU Aw -plane corresponds to 

the AkAS -combination is a circle drawn on the assumption that HTo, H,o’ and 

shifted in accordance with Eq. (6. 1). 
Let us consider the case of 1 Hlo’ 1 > I JKo I with an arbitrary angle between 

HTo and HTO’ . In that case the circles in the Au Aw -plane, which correspond 

to the AKAS - and RAKA -combinations, lie one inside the other and divide 

the entire plane in regions which correspond to combinations SAKAS, RAKAS, 
and RAKAR (Fig. 4). The equations of these curves are similar to (6. 1). 

When I Hzo’ I < 1 H,, \ it is necessary to plot in the AU AW -region the 
two curves that correspond to combinations SAKA and AKAR and divide 

the plane into three regions which correspond to combinations SAKAS, SAKAR, 

and RAKAR (Fig. 5). 
If 1 HrO’ 1 = 1 H,o I , the circle that corresponds to the AKA -combination 

divides the Au Aw -plane into two regions : SAKAS and RA KAR (Fig. 6). 
Let all parameters of the medium on both sides of the discontinuity plane be spe- 

cified. Since the components of field Hro II H,o’ are specified, it is clear for which 
lines we have to write down the equations, using formulas (2.9), (3.8). and (4. 1). in 
order to construct the related pattern in the AV AW -plane. Having constructed the 
pattern with known Au and Aw we find the region in which the point with these 
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coordinates lies. i. e.we determine the combination of waves and discontinuities into 
which the initial discontinuity disintegrates. 

Fig. 4 Fig. 5 

Equating the sums of jumps of each magnetohydrodynamic quantity at each of the waves 
and discontinuities generated at the initial jump, we obtain a system of algebraic 

equations that has to be solved numerically. 
The authors thank V. V. Gogosov for suggesting the subject of this paper. 
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